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Instytut Fizyki UMK, Grudzia̧dzka 5, 87-100 Torún, Poland†
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Abstract. The complex coordinate approach, widely used in theoretical atomic spectroscopy,
is applied here to study energies and lifetimes of resonant tunnelling in double-barrier
heterostructures within an applied electric field. The method gives very accurate results and
they are compared with those obtained by other methods. Possible applications of this method
for studying resonant states in various low-dimensional structures are discussed.

1. Introduction

Resonant energy structure of quantum wells, double barriers, superlattices and quantum
dots in electric fields has been for the last two decades a subject of intensive experimental
and theoretical investigation [1–14]. This is because the resonant tunnelling leads to the
observed effects of fast response time and negative differential resistance, which open up
possibilities of building new high-frequency modulation devices.

The methods used to calculate tunnelling lifetimes in multibarrier structures (or decay
times in the case of quantum wells) are usually based on the one-band effective-mass
approximation. The time-independent methods can be divided into two groups. In the first
[5, 6] the model potential that represents the multibarrier (or quantum well) structure is
placed in a large infinite-potential well leading to discretization of the continuum energy
spectrum. Among the exact (matching) or approximate (in a basis) solutions of the
Schr̈odinger equation for such a system, there are few bound states that show a significant
probability of finding an electron in the well regions. They correspond to metastable resonant
states. In the other group of methods [3, 4, 9] one considers transmission of plane waves
or Airy solutions and the knowledge of tunnelling lifetimes is derived from this analysis.
In yet another method, the time-dependent Schrödinger equation is solved for wave packets
scattered by the model potential [14].

In the descriptions mentioned above, both the energy and the tunnelling lifetime of
a resonant state are depicted by graphs, on which some calculated quantities are plotted
versus electron energy. In the method of Borondo and Sanchez-Dehesa [5] and of Portoet
al [6], applied to quantum wells and double-barrier structures (DBS) in an electric field,
respectively, the resonant energiesEr and widths0 (tunnelling lifetime τ = h̄/0) are
determined by the Fermi Golden Rule and taken from the stabilization graphs that show
positions of bound states versus changing the size of a large infinite-potential well. In
the method of Bloss [9] bothEr and 0 are read from the local density of statesρ(E)
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calculated using the relationρ = −(2/π)Im G(E). Similarly, in the methods that analyse
transmission and reflection of incoming waves,Er and 0 are identified with the peaks in
graphs of phase-shifts [4] or transmission coefficients [3]. In the time-dependent approach
[14] the resonant energies are recognized as peaks inI–V characteristics and the tunnelling
times are approximated by saturation times of the tunnelling probability. Although this
method allows for tracing in time the process of resonant tunnelling, it is much more
computer time and memory consuming than the standard stationary approaches.

One of the advantages of the complex coordinate rotation methods [15, 16] is that,
as in the case of exact matching methods [10–12], one gets the complex energiesEres =
Er − i0/2 of the resonant states directly. They are eigenvalues of the Hamiltonian matrix
evaluated using normalizable functions and complex rotated coordinates,xeiθ , either in the
Hamiltonian or in the basis functions. The complex eigenvalues formθ -trajectories on the
complex plane. The resonances are identified with theθ -independent eigenvalues (for some
range of the rotation angleθ ). Methods of this kind are widely, and successfully, used in
the investigations of atomic and molecular autodecaying states [15, 16]. For the present
application we have chosen the method developed by Nicolaides and co-workers (see [16])
because of its simplicity and fast convergence property [17]. The standard, previously
mentioned methods, that are based on the procedure of matching of the exact solutions
of different structure regions, were originally designed for treating mainly one-dimensional
rectangular multibarriers. Extension of these methods to other structures is neither simple
nor straightforward. In contrast, the complex coordinate approach can be easily applied
to quantum dots, to quantum wires, to any kind of profiled or doped structures and to
multiband Hamiltonians, since it always consists in diagonalization of the Hamiltonian
matrix performed for several values of the rotation angleθ .

In this work we present a preliminary application of the complex coordinate rotation
method to the problem of resonant tunnelling in symmetrical DBS, that has been frequently
used for testing various approaches [3–14]. We show here how stable this method is, even
for high external electric fields applied, yielding accurate results for the resonance positions
and lifetimes, in the minimal gaussian basis sets used. We also perform a study of the
behaviour of energy positions and lifetimes of the ground and excited resonant states versus
an applied electric field, for two different DBS. The method is briefly explained in the next
section. The results of the application are presented in section 3.

2. Outline of the method

The problem that we deal with in this paper belongs to the class of non-stationary or
resonance state problems. Such systems can be treated by methods involving the use of
complex coordinates [15, 16]. We repeat here the most essential elements of the approach
called the complex eigenvalue Schrödinger equation (CESE) as developed by Nicolaides
and co-workers (see [16]).

The wave function of a system in the vicinity of the resonance (energy close to the
resonance energy) can be written as

9(x) = ψ0(x) + χas(x) (2.1)

where ψ0 stands for the localized part of the state, responsible for its quasistationary
character, andχas is the unbound part of the state having an asymptotic behaviour
appropriate to the case under consideration. The dynamics of the decay of the resonance is
governed by the interaction between these two parts.
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The wave function (2.1) contains all of the information about the system bothon and
off resonance. It satisfies the equation

(H − E)9(x) = 0 (2.2)

whereH is the full Hamiltonian of the system. The energyE is a real numberoff the
resonance. However,on resonance the asymptotic form of the wave function demandsE

to be a complex number with the imaginary part negative:

Eres = Er − 1

2
0i. (2.3)

In the case of electric field potential resonances and short-range potentials (both closely
related to our problem) this fact was discussed in detail by Nicolaides and Themelis [18]
and Nicolaides, Komninos and Mercuris [19].

When considering the time-independent Schrödinger equation (2.2) for the resonance
one assumes that the time evolution of the system is described by

exp

(
−i

Eres

h̄
t

)
= exp

(
−i

Er

h̄
t

)
exp

(
− 0

2h̄
t

)
(2.4)

and therefore the state decays exponentially with the lifetimeτ = h̄/0.
The difficulty in solving the complex energy Schrödinger equation is that the proper

boundary conditions must be imposed on the solution. However, this can be easily handled
by transforming the spatial coordinate so that the resonant eigenfunction becomes bound, the
Hamiltonian is non-Hermitian and the eigenvalue, i.e., the complex energy of the resonance,
remains unchanged. There are several transformations which turn the unbound resonance
function into the square-integrable function space [18]. The most commonly used one [15]
is the complex rotation of coordinates

x → xeiθ (2.5)

(with real parameterθ ) introduced by Dykhne and Chaplik [20] for the regularization of
resonances of short-range potentials. This transformation was proven by Nicolaides and
Themelis [18] to be computationally convenient with good convergence properties for both
dc- and ac-field problems.

If one replacesx in χas of equation (2.1) byxeiθ then the result

χ̃as(x) ≡ χas(xeiθ ) (2.6)

is a square-integrable function ofx, providing thatθ is in the proper range,θ ∈ Rθ ,
depending on the asymptotic form ofχas(x) (e.g. 0 < θ < 3

2π for the LoSurdo–Stark
problem [18]). Thereforẽχas(x) can be expressed as an expansion

χ̃as(x) =
∞∑

k=1

φk(x) (2.7)

in a complete basis set of square-integrable functionsφk. Back rotation (replacingxeiθ by
x) gives

χas(x) = χ̃as(xe−iθ ) =
∞∑

k=1

φk(xe−iθ ). (2.8)

It should be emphasized that equation (2.8) is strict andχ(x) does not depend onθ under
the condition thatθ ∈ Rθ .

In practice, finite basis sets are used to representχas . The localized part of the wave
function, ψ0, is also represented in a basis of square-integrable functions. Hence the
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problem of solving equation (2.2) for the resonance energy and wave function is reduced
to a variational problem in a basis of square-integrable functions. One part of the basis,
chosen to represent the localized part of the resonance, is taken as functions of justx. The
other part of the basis consists of functions ofxe−iθ so as to describeχas . The variational
procedure leads to the Hamiltonian matrix eigenproblem (generalized if the basis is non-
orthonormal). Since the basis functions are square-integrable [21] all of the matrix elements
are finite and, in principle, there is no problem with their evaluation.

Figure 1. Theθ -trajectories formed by the eigenvalues obtained for three slightly different basis

sets (+, ◦, ⊕) for the 40–60–40 DBS in theF = 0.0015 eV Å
−1

electric field. All of the
θ -trajectories start at the real axis forθ = 0. Each trajectory consists of 30 points corresponding
to uniformly distributed values ofθ in the range from 0 toπ/4. The eigenvalues corresponding
to unbound states are homogeneously placed along theθ -trajectories. For a givenθ they lie on a
half-line rotated (approximately) by the angle 2θ into the lower complex half-plane, around the

continuum threshold point (0.105 eV forF = 0.0015 eVÅ
−1

). Theθ -trajectories corresponding
to the resonance converge to a well determined point independent of the basis set (see the inset
where the vicinity of the convergence point is magnified) though the starting points atθ = 0
differ much more than for the unbound-stateθ -trajectories.

The Hamiltonian matrix is complex and symmetrical. So it is non-Hermitian and its
eigenvalues are complex. Some of them correspond to the resonances. If the basis set
were complete it would be very easy to identify them. Since, in such a case,χas does
not change with respect to variation ofθ over its rangeRθ , then the resonance eigenvalues
also should be invariant. Truncation of the expansion (2.8) causes the basis set that is
actually used to be better for some values ofθ than for some others. Thus, the truncated
expansion changes together withθ and so do the roots corresponding to the resonances.
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Therefore,θ should be treated as an extra variational parameter. Diagonalization of the
Hamiltonian is performed for several equidistant values ofθ in the proper intervalRθ .
Only those eigenvalues which stabilize against variation ofθ should be considered as being
approximate complex energies of resonances. The behaviour of the eigenvalues with respect
to the variation ofθ is shown in figure 1, for one of the systems investigated in this work.
Considering the so-calledθ -trajectories one can easily distinguish between the resonance
eigenvalue and those corresponding to completely unbound states.

Table 1. Tunnelling lifetimesτ of the resonances in the double-barrier structures (a), (b) and
(c) investigated for different applied biasF(a + 2b). A comparison with the results from other
methods (see the text) is given. Parameters:m∗—effective mass;a—well width (Å); b—barrier
width (Å); V0—barrier height (eV).

(a) (b) (c)

m∗ 0.41 0.41 0.67
a 60 60 50
b 40 70 50
V0 0.5 0.5 0.23

Bias (meV) n CESE SM TC CESE SM TC CESE MF

0 1 0.540 0.538 0.539 26.0 25.2 25.3 0.641 0.64
2 0.025 36 — — 0.197 — —

40 1 0.535 0.536 0.533 25.5 24.6 24.7
2 0.025 27 — — 0.192 — —

100 1 0.507 0.504 0.506 22.9 22.0 22.2
2 0.024 75 — — 0.173 — —

3. Results and discussion

In order to illustrate how the CESE method works for the problems of resonant tunnelling
in semiconductor structures, we have applied it for studying the energy positions and widths
of the resonant states in several symmetrical double-barrier structures. The DBS consist
of two barrier material layers of thicknessb separated by a thin well layer (thicknessa)
and placed between two thick well-type material layers. We work within the one-band
effective-mass approximation and we consider the electron states only. The parameters of
the DBS investigated are collected together in table 1. The columns (a) and (b) of the table
correspond to the DBS based on Ga0.47In0.53As/Al0.48In0.52As materials [6] while row (c)
describes the Ga0.75Al 0.25As/GaAs structure [5]. For simplicity and for comparison with
the results obtained by other methods we consider the effective mass as homogeneous over
the whole DBS†. Since the barrier material is of high resistivity and since we assume the
n-type materials to be in the outside regions, the potential outside the barriers is flat and the
electric bias is applied only along the barrier well part of the DBS (see the inset in figure 2).

Because of the symmetry of the DBS the origin of the coordinate axis,x = 0, has been
put in the middle of the well. The basis set has been chosen asN = N1 + N2 gaussian
functions of even parity,φi = exp(−αix

2), andM = M1 + M2 odd-parity functions of the

† The effective mass enters into the Hamiltonian matrix through the kinetic energy integrals that for homogeneous
m∗ are evaluated analytically. One could use differentm∗ in different regions of DBS, but this would require
one to calculate these integrals numerically. In addition it would be inconsistent with the usage of gaussian basis
functions having their first derivatives continuous across the interfaces.
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Figure 2. The dependence of then = 1 resonance energy position, in eV, on the

applied fieldF , in eV Å
−1

, for the 40–60–40 DBS (a) and for the 70–60–70 DBS (b) of
Ga0.47In0.53As/Al 0.48In0.55As.

type φi = x exp(−αix
2). Using the non-orthogonal basis sets we are free to choose them

as appropriate just from the structure geometrical point of view (determination of the initial
exponentsαi). The non-orthogonality would anyway appear after the complex rotation of
the coordinate even if we used an originally orthogonal basis. TheN2 even functions and
M2 odd functions have been rotated into the complex plane via the variable transformation
x → xe−iθ (see equation (2.8)). The non-linear parametersαi for all four function types
(even-parity non-rotated, odd-parity non-rotated, even-parity rotated and odd-parity rotated)
have been chosen as the even-tempered sets i.e.,αi = α0q

i . The exponents of the basis
functions in each subset are thus defined by only two parameters,α0 and q, and finally
we end up with eight free parameters for each DBS. The parameters have been optimized
(once for all the electric fields applied) in order to give the most stable and convergent
θ -trajectories. In the case of structures (a) and (b),N1 = 22, N2 = 13, M1 = 22, M2 = 13,
while for the DBS (c),N1 = 20, N2 = 12 (for this structure we present here only the
field-free result for the only even-parity resonance).

The calculations have been performed for different values of the electric fieldeF

changing from 0 to 3× 105 eV cm−1. The results are collected together in several figures
showing clearly the behaviour of the energy positions and lifetimes of various resonances
in different asymmetric DBS over the whole range of the applied field. The ground and
first excited resonance energy positions (in eV), versus the electric fieldF , are presented in
figures 2 and 3, respectively. The corresponding tunnelling lifetimes (in ps) are shown in
figures 4 and 5. The lifetimes for some particular values of the electric field are presented
in table 1 and are compared with the results obtained by the stabilization method (SM)
[6], transmission coefficient analysis (TC) [6] and wave-function-matching method (FM)
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Figure 3. The same as in figure 2 but for then = 2 resonance state.

[10]. It has been checked that the increase of the number of basis functions does not affect
the significant figures of the results presented in table 1. Figure 6 shows additionally the
convergence ofθ -trajectories for the ground resonant state for a few different values of the
field parameterF .

The lifetimes of the ground resonance state calculated using the CESE method are in
very good agreement with the results obtained by other methods. However, it is significant
that working with a single and not extensive basis set we were able to get stable and accurate
results for higher resonances appearing below and above the barriers, and for higher fields
than those usually investigated in the literature.

Let us now examine briefly some details of the results obtained. From figure 2 we can
see that the shift (caused by the electric field) of the energy position of the lower (n = 1)
resonant state is similar for both DBS, which differ in the barrier width.

However, for the second (n = 2) resonant state (figure 3) the energy position of this
state for a 40–60–40 DBS goes down rapidly with the applied electric field, while it remains
nearly unchanged in the case of a 70–60–70 DBS. This can be explained in terms of
interaction with the continuum. In this case the excited resonance of the thicker structure
lies energetically higher (closer to the top of the barrier) and already for low fields is
strongly coupled to the continuum through the upper triangular part of the right-hand-side

barrier (forF > 0.8 eV Å
−1

, Er is greater than the right-hand top of this barrier, and for

F > 2.7 eV Å
−1

, Er is greater than the highest barrier top). This causes a fastwashing out
of this state from the well and the further increase of the field does not change the position
of the resonance significantly.

The dependence of tunnelling lifetimes on the applied electric bias is, for both (a) and
(b) structures andn = 1, 2 resonances, shown in figures 4 and 5. ForF ≈ 0 the τ in the
DBS having thicker barriers are, as expected, much greater than the correspondingτ in the
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Figure 4. Tunnelling lifetimes, in ps, of then = 1 resonance in the 40–60–40 (a) and 70–60–70

(b) DBS versus the applied electric field, in eV̊A
−1

.

thinner structure. Although the character of theτ(F )-dependence, shown in the inset in
figure 4, is similar for both DBS, the lifetime in the 70–60–70 DBS decreases much more
rapidly with the field (by an order of magnitude) than for the 40–60–40 structure. This is
because the resonant state in the latter structure is already forF = 0 much more diffuse (less
stable) than the corresponding resonance in the former DBS. The decay channel opened up
by the field plays thus a greater role in the broadening of the resonance in 40–60–40 DBS.

For very high fields (F > 3 eV Å
−1

) τ(b) nearly reaches the value ofτ(a). This means that
for the high-field regime the lifetimes are determined mainly by the field broadening of the
resonant states.

For F > 1.6 eV Å
−1

in the case of the 40–60–40 DBS and forF > 1.2 eV Å
−1

for
the 70–60–70 DBS, the ground resonance becomes a quasibound well state (its energy lies
below the left-hand-side potential edge andτ corresponds now to the decay time). This
fact is most clearly reflected in the structure ofτ(a)(F ) shown in the inset of figure 4.

The results presented show the usefulness of the CESE method in studying resonant
tunnelling phenomena in multibarrier structures. Working with the very limited gaussian
basis sets and with only a few optimized non-linear parameters we were able to obtain stable
and accurate results for energy positions and lifetimes for different structures and for high
applied electric fields. The method is undoubtedly less computer time consuming than the
other standard approaches, in which interface matching or integration of the Schrödinger
equation has to be performed for a large number of energies in order to correctly reproduce
the character of the transmission coefficient curve for all of the resonances. In the complex
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Figure 5. The same as in figure 4 but for then = 2 resonance state.

coordinate approach, usually 15 values ofθ are sufficient to get correct energy positions and
widths of all of the resonances appearing in the structure investigated. The only weak point
of this method is that it requires one to perform several initial calculations for checking
stability and convergence of the basis functions.

Apart from giving a test illustration of the application of the complex coordinate
rotation method to the problems of resonant tunnelling in semiconductor low-dimensional
structures, we have also investigated the behaviour of various resonant states in different
symmetrical DBS versus an applied electric field. We have shown that the method allows
one to investigate also higher resonances—even those that appear above the barrier. It thus
constitutes a useful tool for the investigation of energy structure of other low-dimensional
systems. We mean here, for instance, resonant states of donors or excitons confined in
quantum wells and quantum wires. Basis set calculations of the discrete energy structure
of such systems are frequently performed [22]. Extension to the investigation of resonant
states of these systems is, in terms of the complex rotation method, straightforward. Another
example is the resonant tunnelling states of Coulomb island or quantum dots. Their spherical
models are similar to those of atoms, for which the complex rotation method has been most
widely used in the investigation of resonant states. Application of this method to the study
of resonances in quantum dots is already in progress. The method should also be easily
applicable to finding the resonant energy structure of on-the-surface absorbed atoms [23],
which is important for an understanding of scanning tunnelling spectroscopy phenomena.
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Figure 6. The convergence ofθ -trajectories for then = 2 resonance in the 70–60–70 DBS for

25 equidistant field values fromF = 0 eV Å
−1

(point A) to F = 0.003 eV Å
−1

(point B).
Each trajectory consists of 40 points marked as+. Some of them, those for the first 5–10 small
values ofθ , may seem to be distributed in a chaotic way. However, for largerθ -values the
θ -trajectories are clearly distinguishable. The optimal points on each trajectory are marked by◦.
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